| 1 | Exponents
 1_2
 Mathem
 atics | A worm with some magic
 Chapter 13
 powers, grows to "a" times its
 own length each week. If its
 length is "a" cm now, five
 weeks from now its length will
 be: | | C |
| :---: | :--- | :--- | :--- | :---: | :---: |

7	5_29 Mathematics 11327	EXPONENTS AND POWERS Chapter 13	Which of these can be expressed as 5^{3} ?		D
				ptions	
		Option A	Option B	Option C	Option D
		$2^{3}+3^{3}$	$5+5+5$	$3 \times 3 \times 3 \times 3 \times 3$	$\begin{aligned} & (7-2) \times(7-2) \times \\ & (7-2) \end{aligned}$

$\begin{aligned} & \mathbf{Q} . \\ & \mathbf{N} \end{aligned}$	Folder name \& Questio n Code	Topic	Question with Answer Option s	Image (If Any)		Correct Answer (OptionA,B,C,D)
13	3_19 Mathematic s 2701	VISUALISING SOLID SHAPES Chapter 15	Three of the cardboard cut-outs shown below form cubes when folded up along the dotted lines. Which cut-out does NOT form a cube when folded up?			C
		Answer Options				
		Option A	Option B	Option C	Option D	
		A.	B.	C.	D.	

$\begin{aligned} & \mathbf{Q} \\ & \cdot \\ & \mathbf{N} \end{aligned}$	Folde r Quest ion Code	Topic	Question with Answer Options		$\begin{gathered} \text { Imag } \\ \text { e (If } \\ \text { Any) } \end{gathered}$	Corr ect Ans wer (Opti on $\mathbf{A}, \mathbf{B}, \mathbf{C},$ D J
14	5_27 Mathe matic s	Visualising Wh Solid stat Shapes the Chapter 15 cor bel 	Which of the following statements is true about the edges meeting at corner X of the box shown below?			D
	8365	Answer Options				
		Option A	Option B	Option C	Option D	
		3 edges meet at X and each edge is perpendicular to exactly one of the other two.	4 edges meet at X, one pair of edges is perpendicu lar and the other parallel.	3 edges meet at X and each edge is parallel to the other two.	3 edges meet at each edge is perpendicular to other two.	and the

